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Some Fixed Point Theorems via w-Distance
on Cone Metric Spaces

Sushanta Kumar Mohanta*, Rima Maitra®

Abstract - In this paper we present some fixed point theorems with the help of the concept of w- distance on cone metric
spaces. Our results generalize and extend several well known results in the existing literature.
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[. INTRODUCTION AND PRELIMINARIES

n 1996, Kada et.al.[10] introduced the notion of w-distance on a metric space and proved a nonconvex

minimization theorem which generalizes Caristi's fixed point theorem and the e -variational principle. Afterwards,

Huang and Zhang [8] initiated the notion of cone metric spaces by replacing the set of real numbers with an
ordered Banach space . They also proved some fixedpoint theorems of contractive mappings on complete cone
metric spaces with the assumption of normality of a cone. After that series of articles about cone metric spaces
started to appear. In this work we extend the idea of w -distance on metric spaces to cone metric spaces and prove
some fixed point theorems by considering w -distance on cone metric spaces. Our results generalize some recent
results in fixed point theory.

Let E be areal Banach space and P be a subset of E/ Then P is called a cone if and only if

(i) P is closed; nonempty and P # {0};

ia,be R, a,b>0, z,y€ P = ar+by € P;

(i) PN (—=P) = {6}.

Foragiven cone P C E, we can define a partial ordering < with respect to P by © < y (equivalently, y = ')
ifand onlyif y — 2 € P. x < y(equivalently, ¥ > ) will stand for x < yand x #Y while ¥ < ¥ will stand
for y —x € int P, where int P denotes the interior of P.For a finite subset A of F, if there exists an element
x € A suchthat z < aforall a € A, wewrite © = min A.If thereis an element ¥ € A suchthat a <y
forall a € A,we write ¥ = max A.ltis to be noted that min A, max A are exist if the ordering < on E

is complete. The cone P is called normal if there is a number M > 0 such that forall =,y € £,
0 <ax <yimplies ||z [[<M|yl.

The least positive number satisfying the above inequality is called the normal constant of P,

The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if

(r,,) is sequence such that
<< <y <<y

for some y € E,thenthereis © € E suchthat || x, — x |— 0 (n — 00).Equivalently the cone P is regular

if andonly if every decreasing sequence which is bounded from below is convergent. It is well known that a
regular cone is a normal cone. Razapour and Hamlbarani [13] proved that there are no normal cones with
normal constants M < 1 and for each k& > 1 there are cones with normal constants M > k.

Definition 1.1. [8] Let X be a non empty set. Suppose the mapping d : X x X — E satisfies
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() 0 < d(z,y)foral z,y € X and d(x,y) =@ ifand onlyif = y;

(ih d(z,y) = d(y,x) forall z,y € X;

(i) d(z,y) < d(z,z) + d(z,y) forall z,y,z € X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.2. [8] Let (X, d) be a cone metric space. Let (x,,) be a sequencein X and z € X. Ifforevery ¢ € E

with § < ¢ there is a natural number 729 such that for all n > ng, d(z,,2 )< c,then(x,,) is said to be convergent

and (z,,) converges to ,and x is the limit of (z,,) We denote this by lim x,, = x or z, — = (n — ).
n—o0

Definition 1.3. [8] Let (X, d) be a cone metric space, (,,) be a sequence in X. If for any ¢ € E' with § < ¢, there is a
natural number n such that for all n,m > ng, d(x,, x.,) < ¢, then(z,,) is called a Cauchy sequence in X .
Definition 1.4. [8] Let (X, d) be a cone metric space, if every Cauchy sequence is convergent in X, then X is called a

complete cone metric space.
We also note that the relations int P + int P C int P and Aint P C int P (A > 0) hold.

Lemma 1.1. [14] Let (X, d) be a cone metric space and a, b, ¢ € X, Then

()If a << b and b < ¢ then a < c.
(i)If a <band b ¢ then a < c.

Here we present some elementary results of [8].
Let (X, d) be a cone metric space, PP a normal cone with normal constant M, = € X and (xn) a sequence in
X.Then

() (z,) converges to z if and only if d(z,,z) — 6 (Lemma1).
ii) Limit point of every sequence is unique (Lemma 2).

(
(i) Every convergent sequence is Cauchy (Lemma 3).
(V) () is a Cauchy sequence if and only if d(z,,, 7,,) — 0 @s n,m — oo (Lemma 4).
M If 2, = 2 and Yn — Y then d(x,, y,) — d(x,y) as n — oo (Lemma 5).
Proposition 1.1. [9] If E is a real Banach space with cone P and if a < Aa where a € P and 0 < A\ < 1 then
a=2~0.
In the following definition we extend the idea of w-distance on metric spaces to cone metric spaces.
Definition 1.5. Let (X, d) be a cone metric space. Then a function p : X X X — P is called a w-distance on X
if the following conditions are satisfied:
M) p(z,z) < px,y) +ply, 2) forany x,y,z € X;
(i) forany x € X p(z,.) : X — P islower semicontinuous i.e., if = € X,

Yn =y € X then p(x,y) < lim inf p(x,y,);

n—oo

(iii) for any § < @, there exists 0 << 3 suchthat P (2,2) < B and P(z,y) < Bimply d(z,y) < a.

Example 1.1.Let E = R?, P = {(z,y) € E: 2,y >0}, X = Rand d: X x X — E defined byd(z,y)
(|lz =y |, alz—y|)where @ > 0 is aconstant. Then (X, d) is a cone metric space. We definep : X x X

— P by p(x, y) = (c, c) forevery £,y € X , where c is a positive real number. Then p is a w - distance on

X.

Proof. (i) and (i) are obvious. To show (iii), for any § < av,put 3 = (£, § ).Then p(z, 7)< Bandp (z,y) < B

imply d (z,y) < .

© 2012 Global Journals Inc. (US)



Example 1.2. Let (X, d) be a cone metric space, P anormal cone. Then d isa w-distance on X .
Proof. (i) and (i) are obvious. To show (iii), let 0 < v be given and put § = §-Then if d(z,r) < 3 and
d(z,y) < [,we have
d(z,y) <d(z,2) +d(z,y) <+ 5 =
Definition 1.6. Let (X, d) be a cone metric space. A mapping 7" : X — X is said to be expansive if there exists
areal constant ¢ > 1 satisfying d(7'(z),T'(y)) > cd(z,y) for all z,y € X.
2. MAIN RESULTS

In this section we always suppose that FE is a real Banach space, P is a non normal cone in £ with
int P # () and < is the partial ordering on ' with respect to . Throughout the paper we denote by N the set

of all natural numbers.

We start with the following lemma that will be needed in the sequel.

Lemma 2.1. Let (X, d) be a cone metric space and let P be a w-distance on X.Let (z,,)and (y,) be sequences in

X.Let (av,) and (3,) be sequences in P converging to § andlet x,y, z € X. Then the following hold:
W) 1f (@, Yn) < @ and p(2n, 2) < Byforany n € N, then (y,,) converges to 2;

(i)If P(@n,Y) < omand p(y, 2) < Bpforany n € N, then y = z. In particular, if p(x,y) =fand p(x, 2) =0,

then ¥ = z;

(iii) f P(@n, Tm) < o forany n,m € N with m > n,then (z,,) is a Cauchy sequence.

Proof. () Let § < « be given. Then there exists § < 3 suchthat p(u,v) < [ and p(u, z) < 3 imply
d(v,z) < a.Choose ny € N suchthat a, < 3 and f,, < (3 for every n > ng.Now, for any n >
10, (Zps yp) < an < B and p(2n,2) < B, < B and hence d (yn, z) < a.This implies that (Yn)
converges to z.

It follows from (i) that (i) holds.

To prove (iii), let # < « be given. As in the proof of (i), choose § < 3 andthen ng € N .Now for any
n,m > ng+ 1, p(@ny, n) < Qny K B and p(Tngy, Tm) < g <K 5 and hence d(,, 7,,) < .
This implies that ( Z,, ) is a Cauchy sequence.

Theorem 2.1. Let (X, d) be a complete cone metric space with w-distance p and < be a complete ordering on

E with respectto P.Let T, T be mappings from X into itself. Suppose that there exists 7 € [0, 1) such that

mazx { p(T1(x), T (x)), p(Ta(x), TiTo(x))} < rmin{p(z, Ti(x)), p(z, To(x))} (2.1)
forevery x € X and that
inf {p(x,y) + min{p(z, T1(x)), p(z, To(x))} :x € X} > 6 (2.2)

for every i € X with ¥ is not a common fixed point of 7} and 75 Then there exists z € X such that
z = Ti(z) = Ty(z) .Moreover, if v =T, (v) = Ty(v) then p(v,v) = 0.
Proof. Let g be an arbitrary element of X.A sequence (u,)in X is defined by
U, = T1(Up—1)if 1 isodd
= T5(up—1),if n is even.
Then applying condition (2.1), we have for any positive integer n,

p(unaun-i-l) S Tp(”n—luun)- (23)
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By repeated use of (2.3), we obtain

p(un7un+1) S Tnp(umul)‘
If m > n,then

p(umum) < p(unaun-i-l) +p(un+1aun+2) +- +p(um—1a um)

< [t ™ pug, w)

7,,’I'L

1—r

IN

p(u07 U1>-

Obviously, ( % p(ug, uq )) is a sequence in P converging to #.So, by Lemma 2.1(ii), (uy, ) is a Cauchy sequence in

X.Since X is complete, (u,, ) converges to some point z € X.Let n € N be fixed. Then since (u,) converges to

2 and P (U, .) is lower semicontinuous, we have
n

Plitn,2) < T inf plitn, ) < —— plug, ),
m—ro0

Assume that z is not a common fixed point of 7, and T .Then by hypothesis
inf {p(x,z) + min{ p(x, T1(z)),p(z, To(z))} : x € X}
inf {p(un, z) + min{ p(u,, T (u,)), p(t,, To(u,))} :n € N}

) r’
inf { p(ug, wr) + p(ty, Unt1) 110 € N}

0

IN A

IN

1—r

IN

Tn
inf { 1— TP(UO,M) + 1" p(ug,ur) 1 n € N}
= 0
which is a contradiction. Therefore, z = T1(z) = T5(z).

Suppose that v = T1(v) = Ty(v) for some v € X .Then

p(v,v) = maz {p(Ti(v), 11 (v)), p(T2(v), T1T>(v))}

< rmin {p(v,T1(v)),p(v, To(v))}

= rmin {p(v,v),p(v,v)}

= rp(v,v).
By Proposition 1.1, it follows that p(v,v) = 6.
The following Corollary is the generalization of the result [10; Theorem 4] to cone metric spaces.
Corollary 2.1. Let (X, d) be a complete cone metric space, let p be a w-distance on X and let T be a mapping from
X into itself. Suppose that there exists r € [0, 1) such that

p(T(x), T*(x)) < rple,T(x))
forevery x € X and that
inf {p(z,y) +p(z,T(z)) :x € X} >0

forevery y € X with y # T'(y) Then there exists z € X suchthat z = T'(z).Moreover, if v = T (v),then
p(v,v) = 0.

Proof. Taking 1} = 15 =T in Theorem 2.1, the conclusion of the Corollary follows.

Note: It is worth mentioning that for the cases 77 = T5 it is suficient to assume that < is a partial ordering on

© 2012 Global Journals Inc. (US)



E with respect to P instead of a complete ordering.

Using Corollary 2.1, we obtain the following theorem:

Theorem 2.2. Let (X, d) be a complete cone metric space, let P be a w-distance on X andlet 7" : X — X

be continuous. Suppose that there exists r € [0, 1) such that

p(T(x), T%(z)) < rp(z, T(x))

forevery 2 € X .Then there exists z € X suchthat z = T'(z).Moreover, if v = T(v), then p(v,v) = 0.

Proof. Assume that there exists y € X with y # T'(y) and

inf{p(z,y) +plz,T(x)):x € X} =0.
Then, there is a sequence (Zn) in X such that

Tim {p(zn, y) + p(an, T(a))} = 0.

So, it must be the case that p(z,,,y) — 6 and p(x,, T(z,)) — 6.ByLemma 2.1(),(T(z, ))converges to y.

Now,
p(xn, T*(2,)) < plag, T(wn)) + p(T(2n), T?(2))
< p(@n, T(@y)) + rp(@n, T(z,))
— 0.

Again, by Lemma 2.1(i), (T2(xn)) converges to ¥ . Using continuity of T", we obtain

T(y) = TUm T (z,)) = lim T?(z,) = y

n n

which is a contradiction.
Hence, if y # T'(y),then
inf{p(z,y) +pz,T(z)): v € X} > 0.
Now Corollary 2.1 applies to obtain the desired conclusion.
As an application of Corollary 2.1, we obtain the following results [8; Theorem 1; Theorem 3; Theorem 4].

Theorem 2.3. Let (X, d) be a complete cone metric space, P be a normal cone with normal constant M .

Suppose the mapping 7' : X — X satisfies the contractive condition
d(T(x),T(y)) < kd(z,y), for all x,y € X, (2.4)

where k € [0, 1) is aconstant. Then 7" has a unique fixed point in X
Proof. Since P is normal, we treat d as a w- distance on X.From (2.4), it follows that

d(T(z),T*(z)) < kd(x,T(zx)) for every x € X.
Assume that there exists y € X with y # T'(y) and
inf{d(z,y) +d(z,T(z)):z € X} =80.
Then, there exists a sequence (2, ) in X such that

JL%{d(x”’ y) + d(x,, T(x,))} = 0.

So, we have d(x,,y) — 0 and d(z,, T (z,)) — 6.Then by Lemma 2.1(j), (T'(x,,)) converges to y-Since

Pisnormal, d(T(z,),T(y)) = d(y,T(y))as n — oo.
By using (2.4), we have

© 2012 Global Journals Inc. (US)
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d(T(x,), T(y)) < kd(z,,y)forany n € N.

Taking limit as 1 — 00, it follows that d(y, T'(y)) < 6 which implies that —d(y, T'(y)) € P.Also, d(y, T(y))e p

and hence d(y, T(y)) = .So it must be the case that y = T'(y).

This is a contradiction.

Hence, if ¥y # T'(y);then
inf{d(z,y) +d(z,T(x)):z € X} >0.

Now Corollary 2.1 applies to obtain a fixed point of 7", Clearly a fixed point of 1" is unique.

Theorem 2.4. Let (X, d ) be a complete cone metric space, I° a normal cone with normal constant M. Suppose the
mapping 7" : X — X satisfies the contractive condition

d(T(x),T(y)) < k(d(T(x),z)+d(T(y),y)), forall x,y € X, (2.5)
where k € [0, 1 )isa constant. Then T has a unique fixed point in X.
Proof. Replacing 4 by T'(z ) in (2.5), we have
d(T(x), T*(x)) < k(d(x,T(z)) + d(T(z), T*(z)) forevery = € X.

So, it must be the case that

d(T(z),T*(z)) < rd(xz,T(x)) forevery x € X,
where 0 gr:ﬁ<1.
By an argument similar to that used above, we have if y # T(y),then

inf{d(z,y) +d(z,T(z)):x € X} > 0.

Applying Corollary 2.1 we have the desired conclusion.

Theorem 2.5. Let (X, d) be a complete cone metric space, P a normal cone with normal constant M. Suppose the
mapping 17" : X — X satisfies the contractive condition

d(T(x), T(y)) < k(d(T(x),y) + d(T(y), ), for all z,y € X,

1
2
Proof. The proof obtained by the same techniques as used above.

where k € [0,3) is aconstant. Then 7" has a unique fixed point in X

Theorem 2.6. Let (X, d) be a complete cone metric space with a w-distance p and < be a complete ordering on

E with respectto P.Let T7, T, be mappings from X onto itself. Suppose that there exists 7 > 1 such that

min{ p(TyTi(x), Ty (x)), p(TTa(x), Ta(x))} = rmax{ p(Ti(x), ), p(Ta(x), 2)} (2.6)
forevery x € X and that
inf{p(x,y) + min{p(Ti(x),x),p(Tr(x),z)} -z € X} >0 (2.7)

forevery y € X with  is not a common fixed point of 7} and Ty .Then there exists = € X such that z = T}
(2) = Ty(2).Moreover, if v = Tj(v) = Ty(v),then p(v,v) = 0.

Proof. Let uy be an arbitrary element of X. 77 being onto, there exists an element U1 satisfying u; € Tfl(uo),
Since T, is also onto, there is an element uy suchthat uy € T, ).Proceeding in a similar way, we can find

© 2012 Global Journals Inc. (US)



Uop+1 € Tfl(Ugn) and Uop49o € T;l(UQnJrl) for n = 1, 2, 3, s
Therefore, g, = T1(ugn+1) and ugpi1 = To(ugnia) forn=0,1,2,- - .
Using condition (2.6), we have for any positive integer n,

p(un—la un) Z Tp(un, un—l—l)

which implies that,

—_

1 n
p(unaun—l—l) S ;p(un—laun) S te S (;) p(u07ul)~ (28>

Leta:%,thenO<a<1sincer>1.

Now, (2.8) becomes

P(tn, Ung1) < " plug, uy).
If m > n,then

p(uru Um) < p(Uru UnJrl) +p<un+17 Un+2) + e _'_p(um*l’um)
< [an + an—l-l + -4 Q{m_l} p(UO,Ul)
am
< .
S 7 Oép(u()aul)

But (fi—na p(uo, u1)) is a sequence in P converging to . So, by Lemma 2.1(iii), (u,,) is a Cauchy sequence in
X . Since X is complete, (un) converges to some point z € X. Let n € N be fixed. Then since () cOnverges
to z and p(un, ) is lower semicontinuous, we have

n

plun,2) < lim inf plun,un) < 7=

mM— 00

o p(UO, 'LL1>.

Assume that 2z is not a common fixed point of 77 and 75.Then by hypothesis
0 < inf {p(z,z) + min{p(Ti(x),z),p(Ta(z),z)} :x € X}
inf {p(un, z) + min { p(T1(un), un), p(Ta(un), un)} 1 n € N}

inf { 1% ap(uoﬂh) + p(Up_1,uy) : 1 € N}

IN

IN

IN

. o _
inf { l_ap(uo,u1)+a" lp(u(),ul):nGN}
= 0

which is a contradiction. Therefore, z = T} (2) = Ty(2).
Suppose that v = T1(v) = Ty(v) for some v € X .Then
p(v,v) = min { p(T11(v), Ti(v)), p(Ti T5(v), Ta(v)) }
Z rmax {p(Tl(v)7 'U)vp(TQ(U)v U)}
= rmaz {p(v,v),p(v,v)}
= 7rp(v,v).
By Proposition 1.1, we have p (v,v) = 6.

Corollary 2.2. Let p be a w-distance on a complete cone metric space (X, d) andlet T: X — X
be an onto mapping. Suppose that there exists 7 > 1such that

© 2012 Global Journals Inc. (US)
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p(T*(z), T(x)) = rp(T(x), x) (2.9)
forevery x € X and that
inf{p(z,y) + p(T(z),z):x € X} >0 (2.10)
forevery y € X andthat y # T'(y).Then T has a fixed point in X .Moreover, if v = T'(v), then
p(v,v) = 0.
Proof. Taking 17 =I5 = T" in Theorem 2.6, we have the desired result.

The following theorem is the generalization of the result [15; Theorem 3] to cone metric spaces.

Theorem 2.7. Let (X, d) be a complete cone metric space, P a normal cone and 7" be a mapping of X

into itself. If there is a real number 7 with 7 > 1 satisfying
d(T(x),T(y)) = rmin{d(T(x),x),d(T(y), y), d(x, y)} (2.11)
forany x,y € X,and T is onto continuous, then 1" has a fixed point.
Proof. Since P isnormal, d is a w-distance on X . Replacing vy by T(m) in (2.11), we obtain
d(T(z), T*(z)) > rmin{d(T(x),z),d(T*(z), T(x)),d(z, T(x))} (2.12)

for all z € X.
We assume that T'(z) # T?(x). Otherwise, T' has a fixed point.
So, it follows from (2.12) that

d(T*(x),T(x)) 2 rd(T(z), )
forevery x € X.
Assume that there exists y € X with y # T'(y) and

inf{d(z,y) +d(T(z),x) -z € X} =0.

Then, there exists a sequence () In X such that

T {d(r, ) + d(T(z,). )} =6,

which gives that d(z,,,y) — 6 and d(z,,T(z,)) — 6.BylLemma2.1(), T(z,))converges to y . Using
continuity of 1", we have

T(y)=T(limz,)= lim T(z,) = v,
n—oo n—oo

which is a contradiction.

Hence, if y # T'(y),then
inf{d(z,y) +d(T(x),z) -z € X} > 0.

Thus, condition (2.10) is satisfied and Corollary 2.2 applies to obtain a fixed point of 7.

Remark 2.1. For an expansive mapping 7" : X — X ,there exists 7 > 1 such that
d(T'(x), T(y)) = rd(z,y) = r min{d(T(z),z),d(T(y),y).d(z,y)}

forall @,y € X.However, the identity mapping satisfies condition (2.11) but it is not expansive. Thus, the class of
mappings that considered in Theorem 2.7 is strictly larger than that of expansive mappings.

© 2012 Global Journals Inc. (US)



Theorem 2.8. Let (X, d) be a complete cone metric space, > a normal cone and the mapping T:X—>X
is continuous, onto and satisfies the condition

d(T(x),T(y)) = k[d(T(z), ) + d(T(y),y)] (2.13)
forall z,y € X, where % < k < 1 isaconstant. Then T has a fixed pointin X .

Proof. Replacing by T(x) and Yy by x in (2.13), we have
d(T%(2), T(x)) = k[d(T*(x), T(z)) + d(T(x), 2)]
which implies that

d(T*(z), T(z)) > rd(T(x),z) for all z € X,

where r = 7% > 1.By the same methods used above, if ¥ 7 T'(y),then
inf{d(z,y) +d(T(x),z) -z € X} >0,

which is condition (2.10) of Corollary 2.2.
Applying Corollary 2.2 we obtain the desired conclusion.
The following is the generalization of Caristi's theorem[2] to cone metric spaces.

Theorem 2.9. Let p be a w-distance in a complete cone metric space (X, d), P a regular cone. Let T’

be a continuous mapping from X into itself. Suppose that there exists a mapping () : X — P such that
p(x,T(z)) < Q(z) — Q(T'(x))
forall @ € X.Then T' has a fixed pointin X .Moreover, if v = T'(v) then p(v,v) = 6.
Proof. Let 1y € X and let (u,,) be defined as follows:
Up =T (up-1) = T"(uo) forn=1,2,3,---.
For any positive integer 7, we have

p(uraur-‘rl) = p(“raT(ur>>
S Q(ur) - Q(T(ur>>
= Q(U’T‘) - Q(ur-i-l)'

Therefore,
n—1 n—1
> p(u, ) < [Qur) — Q)] = Quo) — Qun) < Q(uo).
r=0 r=0
Since P is regular, the series ZP(Um Uyr41) is convergent.
r=0

If m,n € N, m > n,then

p(umum) < p(umunJrl) +p(un+1aun+2) +oe +p(umflvum)

m—1
= > p(u, ). (2.14)

o

Since the series Zp(um Ur41 ) is convergent, by applying Lemma 2.1(iii), it follows from (2.14) that ()
r=0
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is Cauchy. By completeness of (X, d ),there exists v € X such thatlimu,, = v.
n

Using continuity of 7" we have

T(v) =lmT(u,) = limu,4 = v.

So, v is a fixed point of 7".

Now,

p(v,v) = p(v, T(v)) < Qv) = Q(T(v)) =0

implies that —p(v, v) € P.

Also, p(v,v) € P. Since PN (—P) = 0, wehave p(v,v) = 0.

10.

11.

12.

13.
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15.
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